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Abstract: We consider the asymptotic behavior of the final size of a multitype collective Reed-Frost process. This type of models was
introduced by [9] and include most known epidemic models of the type SIR (Susceptible, Infected, Removed) as special cases. Under
certain conditions, we show that, when the initial number of susceptible is very large and the initial number of infected individuals
is finite, the infection process behaves as a multitype Galton-Watson process. This fact is proved using a simple argument based on
Bernstein polynomials. We use this result to study the final size of the epidemic.
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1 Introduction

There is a rich literature concerning the description and analysis of the spread of contagious diseases using mathematical
models. One important class of such models is the type referred to as SIR (Susceptible, Infected, Removed) [6]. In these
models the fundamental question of interest concerns the final size of the epidemic, i.e. the number of individuals to ever
contract the disease. Prior to 1975, two models were used to study the final size: the so-called general epidemic model
and the Reed-Frost model [2]. Later on much effort was deployed in order to generalize these models. [9] introduced
the general collective Reed-Frost model. As will be seen, this model generalizes most epidemic models proposed in the
literature. In the case of a homogeneous population, the Picard-Lefèvre model uses the following hypotheses:

a) At time t, t ∈ IN, let St and It denote the numbers of susceptible and infected individuals, respectively, and let the
vector (St , It) represents the state of the population. Let further (S0, I0) = (n,m) describes the initial conditions. Then
we have

St = St+1 + It+1, t ∈ IN (1)

b) (St , It , t ∈ IN) is a Markov chain with transitions governed by the following rule: consider, among the n initial
susceptibles, any possible subset of size k, k ∈ [0,n]. Then, all the infectives of every generation behave independently.
Moreover, each of them fails to transmit infection within such a subset of susceptibles actually present, with the
(known) probability q(k,n) which depends only on the sizes k and n.

Using a certain family of martingales combined with properties of the Gontcharoff polynomials, [9] could determine the
exact distribution of the final size. The asymptotic result in the same direction was obtained by[7]
Of course, the assumption that the underlying population is homogeneous is not very realistic. In the case of AIDS
modelling for example, it is possible [5] to divide the total population into a number of subgroups (according to sex, sexual
orientation, drug abuse status...) with different risk factors. To take such heterogeneities into account, [9] have described
generalizations of the above cited models. Accordingly, the total population can be partitioned into J homogeneous groups
differing from each other such that the infection within each subgroup is transmitted according to the laws of a model of
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the collective type. For the resulting model, it is possible to apply the techniques used in the homogeneous case to describe
the distribution of the final size of the epidemic as the initial number of susceptibles grows while the initial number of
infectives is kept finite.

2 Collective Reed-Frost epidemic model with several populations

Consider a closed population divided into J distinct homogeneous groups. Suppose that the infection is transmitted within
each group according to the following rules.

a) The propagation of the disease is described through successive generations of infectives. At each time t, t ∈ IN, the
state of the population is given by (S( j)

t , I( j)
t , j = 1, . . . ,J), where S( j)

t and I( j)
t denote, respectively, the numbers of

susceptibles and infecteves in group j, j = 1, . . . ,J, at time t. Initially, (S( j)
0 , I( j)

0 ) = (n j,m j) which implies that

S( j)
t = S( j)

t+1 + I( j)
t+1, j = 1, . . . ,J and t ∈ IN . (2)

b) {(S( j)
t , I( j)

t , j = 1, . . . ,J); t ∈ IN} is a Markov chain with transitions governed by the following rule. Consider any
possible subset in J initial classes of susceptibles of sizes k1 ∈ [0,n1], . . . ,kJ ∈ [0,nJ ] with k1+ . . .+kJ ≥ 1. Then all the
infectives of every generation behave independently. Moreover, each of those in group j, j = 1, . . . ,J fail to transmit
infection within these (at most J) subsets of susceptibles actually present, with the (known) probability q( j)(k1, . . . ,kJ)
which depends only on the current group j and the sizes k1,k2, . . . ,kJ and n1, . . . ,nJ .

We observe that the probabilities q( j)(k1, . . . ,kJ) are evaluated independently of the susceptibles outside the subset. In
addition, these probabilities allow us to determine the conditional distribution of survivals by generation. A direct use of
formula (3.5) in [8], gives

P[S( j)
t+1 = s j, j = 1, . . . ,J/(S( j)

t , I( j)
t , j = 1, . . . ,J)]

=
S(1)t

∑
k1=s1

. . .
S(J)t

∑
kJ=sJ

J

∏
j=1

(
C

k j

S( j)
t

C
s j
k j
(−1)k j−s j [q( j)(k1, . . . ,kJ)]

I( j)
t

)
, (3)

for s1 ∈ [0,S(1)t ], . . . ,sJ ∈ [0,S(J)t ] and t ∈ itIN.
Moreover, the process

(
S( j)

t , I( j)
t , j = 1, . . . ,J, t ∈ IN

)
is terminated at the moment

K = in f{t/I(1)t = I(2)t = . . .= I(J)t = 0}. (4)

S( j)
K is thus the ultimate number of susceptibles in group j, j = 1, . . . ,J, which have avoided contact with all infected and

T ( j) = n( j)−S( j)
K , j = 1, . . . ,J, denotes the final size of the epidemic in group j. The following notation will be needed in

the sequel

M j =

n j, j = 1, . . . ,J
or

n = n1 +n2 + . . .+nJ ,

π( j)
n =

n j
M j

, j = 1, . . . ,J,

Tn = (T (1), . . . ,T (J)).

(5)

3 A branching process approximation

In order to approximate the epidemical process by branching process, we need the following assumptions :

(i) m = m1 + . . .+mJ is finite and π( j)
n −→ π j, whenever n j −→+∞, j = 1, . . . ,J .

(ii) There exists a continuous function ĝ from [0,1]J in [0,1]J such that
|q( j)(k1, . . . ,kJ)− ĝ( j)(1− k1

M1
, . . . ,1− kJ

MJ
)| −→ 0, whenever n j −→+∞, j = 1, . . . ,J, uniformly in k1, . . . ,kJ .
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Let It = (I(1)t , . . . , I(J)t ), St = (S(1)t , . . . ,S(J)t ), z = (z1, . . . ,zJ), and denote by gSt+1(z/St ,It) (respectively fIt+1(z/St ,It)),
t = 0,1, . . . , the conditional generating function St+1 (respectively of It+1). Using the formula (3.3) in [8] we obtain

gSt+1(z/St ,It) = E(
J

∏
j=1

z
S( j)

t+1
j /St ,It)

=
S(1)t

∑
k1=0

. . .
S(J)t

∑
kJ=0

J

∏
j=1

C
k j

S( j)
t
(z j −1)k j [q( j)(k1, . . . ,kJ)]

I( j)
t . (6)

Since I( j)
t+1 = S( j)

t −S( j)
t+1, j = 1, . . . ,J and t ∈ itIN. We have

fIt+1(z/St ,It) = E(
J

∏
j=1

z
I( j)
t+1
j /St ,It)

= E(
J

∏
j=1

z
S( j)

t −S( j)
t+1

j /St ,It)

=
J

∏
j=1

zS( j)
t

j E(
J

∏
j=1

(
1
z j
)S( j)

t+1/St ,It)

=
J

∏
j=1

zS( j)
t

j gSt+1(
1
z1
, . . . ,

1
zJ
/St ,It)

=
J

∏
j=1

zS( j)
t

j

S(1)t

∑
k1=0

. . .
S(J)t

∑
kJ=0

J

∏
j=1

(
C

k j

S( j)
t
(

1
z j

−1)k j [q( j)(k1, . . . ,kJ)]
I( j)
l

)

=
S(1)t

∑
k1=0

. . .
S(J)t

∑
kJ=0

J

∏
j=1

(
C

k j

S( j)
t
(1− z j)

k j z
S( j)

t −k j
j

× [q( j)(k1, . . . ,kJ)]
I( j)
t

)
. (7)

The branching process approximation is based on the following simple heuristic argument. Assume that the numbers n j

are large enough and that the numbers m j are finite. In the beginning of the epidemic when S( j)
t ≃ n j and I( j)

t ≃ i j, then
we obtain the following approximation:

fIt+1(z/St ,It)≃
n1

∑
k1=0

. . .
nJ

∑
kJ=0

J

∏
j=1

(
C

k j
n j (1− z j)

k j z
n j−k j
j [q( j)(k1, . . . ,kJ)]

i j
)
, (8)

consequently,

fIt+1(z/St ,It) ≃
n1

∑
k1=0

. . .
nJ

∑
kJ=0

J

∏
j=1

C
k j
n j (1− z j)

k j z
n j−k j
j

×
J

∏
j=1

[ĝ( j)(1− k1

M1
, . . . ,1− kJ

MJ
)]i j . (9)

Using (9) and the Bernstein theorem [10], we conclude that

fIt+1(z/St ,It)≃
J

∏
j=1

[
ĝ( j)(1−π1(1− z1), . . . ,1−πJ(1− zJ))

]I( j)
t
. (10)

The statement in (10) implies that It+1 is approximately similarly distributed as the sum I(1)t + . . .+ I(J)t of independent
random vectors. I( j)

t , j = 1, . . . ,J have the generating function ĝ( j) (1−π1(1− z1), . . . ,1−πJ(1− zJ)) which is the
generating function of new infected individuals caused by a simple infection of an individual from group j. In other
words, (I0, . . . ,It) is approximately distributed as a multitype branching process, where each individual of group j,
j = 1, . . . ,J, has descendants of type l according to a probability distribution having ĝ( j) (1, . . . ,1,1−πl(1− zl),1, . . . ,1)

as generating function and mean πl
∂ ĝ( j)

∂ zl
(1, . . . ,1).
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Lemma 3.1 (Kissami, 1993)
Given any function f ∈ C (H = [0,1]J , IR) suppose that, for n = (n1, ...,nJ) the H-sequences dn = (d1

n , ...,d
J
n) and cn =

(c1
n, ...,c

J
n) converge, respectively, to d = (d1, ...,dJ) and c = (c1, ...,cJ) then the polynomial

Bn( f ,x) =
nJ

∑
kJ=0

J

∏
j=1

C
k j
n j (1− x j)

k j x
n j−k j
j f (d1

n + c1
n

k1

n1
, ...,dJ

n + cJ
n

kJ

nJ
)

converges uniformly to f (d1 + c1x1, ...,dJ + cJxJ) on H as min
i=1,.., j

ni →+∞.

Proof The following proof is concise than that given by Kissami (1993), it is motivated by Markov’s inequality for random
vectors. We begin by setting the following arguments : Let x = (x1, ...,xJ) on H, the diagonal matrices Cn = diag(cn) and
C = diag(c) and a vector of independent random variables Sn = (

Sn1
n1

, ...,
SnJ
nJ

) where Sni is binomial random B(ni,xi).
Since f is continuous it follows that for βn = dn +CnSn, β = d +Cx on H and a fixed ε > 0, there exists δ > 0 such
that ∥βn − β∥ < δ implies | f (βn)− f (β ) < ε , here ∥.∥ denotes the Euclidean norm of a vector. Consider the event
An := {∥βn −β∥< δ}, we have

|Bn( f ,x)− f (β )| = |E( f (βn)− f (β ))|
≤ E(| f (βn)− f (β )|)
= E(11An | f (βn)− f (β )|)

+E(11Ac
n | f (βn)− f (β )|)

≤ εP(An)+2P(Ac
n) sup

x∈H
| f (x)|

≤ ε +2P(∥βn −β∥ ≥ δ ) sup
x∈H

| f (x)|.

Applying Markov’s inequality and facts that E(
Sni
ni
) = xi and var(

Sni
ni
) = xi(1−xi)

ni
yield

P(∥βn −β∥ ≥ δ ) ≤ E(∥βn −β∥2)

δ 2

=
∑J

i=1 E(di
n + ci

n
Sni
ni

− (di + cixi))
2

δ 2

=
∑J

i=1 E
(

di
n −di + ci

n(
Sni
ni

− xi)+(ci
n − c)xi

)2

δ 2

=
J

∑
i=1

(di
n −di +(ci

n − c)xi)
2

δ 2 +
J

∑
i=1

(ci
n)

2
E(

Sni
ni

− xi)
2

δ 2

=
∥dn +Cnx−d −Cx∥2

δ 2 +
J

∑
i=1

(ci
n)

2 xi(1− xi)

niδ 2 .

As sup
0≤xi≤1

(xi(1− xi))≤ 1/4 for all i = 1, ..,J we have

sup
x∈H

|Bn( f ,x)− f (d +Cx)| ≤ ε +
(

2
∥dn +Cnx−d −Cx∥2

δ 2 +
J∥cn∥2

2δ 2 mini=1,..,J ni

)
sup
x∈H

| f (x)|

Furthermore, ∥dn +Cnx−d −Cx∥→ 0 and ∥cn∥→ ∥c∥, as min
i=1,.., j

ni →+∞, hence

lim
min

i=1,..,J

sup
ni→∞

sup
x∈H

|Bn( f ,x)− f (d +Cx)| ≤ ε,

which complets the proof.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 2, No. 1, 47-59 (2013) / www.naturalspublishing.com/Journals.asp 51

Proposition 3.1 Let t ∈ itIN and I0,I1, . . . ,It fix vectors in ZJ
+. Then

fIt+1(z/St ,It)−→
J

∏
j=1

[
ĝ( j) (1−π1(1− z1), . . . ,1−πJ(1− zJ))

]I( j)
t

, (11)

uniformly on [0,1]J as n j −→+∞ for j = 1, . . . ,J.

Proof Let G(z) =
J

∏
j=1

[ĝ( j)(1−π1(1− z1), . . . ,1−πJ(1− zJ)]
I( j)
t and B(n)

St
(G,z) the Bernstein polynomial associated with

the function G(z). Then,

| fIt+1(z/St ,It)−B(n)
St
(G,z)|

=

∣∣∣∣∣∣
S(1)t

∑
k1=0

. . .
S(J)t

∑
kJ=0

J

∏
j=1

C
k j

S( j)
t
(1− z j)

k j z
S( j)

t −k j
j [q( j)(k1, . . . ,kJ)]

I( j)
t −B(n)

St
(G,z)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
S(1)t

∑
k1=0

. . .
S(J)t

∑
kJ=0

J

∏
j=1

C
k j

S( j)
t
(1− z j)

k j z
S( j)

t −k j
j (

J

∏
j=1

[q( j)(k1, . . . ,kJ)]
I( j)
t −

J

∏
j=1

[ĝ( j)(1− k1

M1
, . . . ,1− kJ

MJ
)]I

( j)
t )

∣∣∣∣∣
+

∣∣∣∣∣∣G(z)−
S(1)t

∑
k1=0

. . .
S(J)t

∑
kJ=0

J

∏
j=1

C
k j

S( j)
t
(1− z j)

k j z
S( j)

t −k j
j [ĝ( j)(1− k1

M1
, . . . ,1− kJ

MJ
)]I

( j)
t

∣∣∣∣∣∣
+
∣∣∣B(n)

St
(G,z)−G(z)

∣∣∣
= E1 +E2 +E3. (12)

Using the triangle inequality we conclude that

| fIt+1(z/St ,It)−G(z)| ≤ E1 +E2 +2E3. (13)

We now demonstrate that E1, E2 and E3 converge to 0. We have

E1 ≤ sup
0≤ki≤ni

∣∣∣∣∣ J

∏
j=1

[q( j)(k1, . . . ,kJ)]
I( j)
t −

J

∏
j=1

[ĝ( j)(1− k1

M1
, . . . ,1− kJ

MJ
)]I

( j)
t

∣∣∣∣∣
≤ sup

0≤ki≤ni

J

∑
j=1

I( j)
t

∣∣∣∣q( j)(k1, . . . ,kJ)− ĝ( j)(1− k1

M1
, . . . ,1− kJ

MJ
)

∣∣∣∣
≤

J

∑
j=1

I( j)
t sup

0≤ki≤ni

∣∣∣∣q( j)(k1, . . . ,kJ)− ĝ( j)(1− k1

M1
, . . . ,1− kJ

MJ
)

∣∣∣∣ , (14)
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combining (14) with the assumption (ii), we see that E1 −→ 0 as ni −→+∞, i = 1, . . . ,J.

E2 =

∣∣∣∣∣∣G(z)−
S(1)t

∑
k1=0

. . .
S(J)t

∑
kJ=0

J

∏
j=1

C
k j

S( j)
t
(1− z j)

k j z
S( j)

t −k j
j

×[ĝ( j)(1− k1

M1
, . . . ,1− kJ

MJ
)]I

( j)
t

∣∣∣∣
=

∣∣∣∣∣∣G(z)−
S(1)t

∑
k1=0

. . .
S(J)t

∑
kJ=0

J

∏
j=1

C
k j

S( j)
t

z
k j
j (1− z j)

S( j)
t −k j

×[ĝ( j)(
M1 −S(1)t

M1
+

k1

M1
, . . . ,

MJ −S(J)t

MJ
+

kJ

MJ
)]I

( j)
t

∣∣∣∣∣ (15)

=

∣∣∣∣∣∣G(z)−
S(1)t

∑
k1=0

. . .
S(J)t

∑
kJ=0

J

∏
j=1

C
k j

S( j)
t
(1− z j)

k j z
S( j)

t −k j
j

×[ĝ( j)(C(1)
n +θ (1)

n
k1

S(1)t

, . . . ,C(J)
n +θ (J)

n
kJ

S(J)t

)]I
( j)
t

∣∣∣∣∣ ,
where θ (i)

n =
S(i)t
Mi

and C(i)
n =

Mi−S(i)t
Mi

.

By combining (5) and the assumption (i) we deduce that

lim
ni→+∞

C(i)
n = 1−πi, (16)

and
lim

ni→+∞
θ (i)

n = πi, i = 1, . . . ,J, (17)

hence from (15)-(17) and Lemma 3.1, we see that E2 −→ 0. In the same manner we can see that E3 −→ 0, whenever
ni −→+∞ for i = 1, . . . ,J. This proves the Proposition.
Let Λ be the square matrix (J,J) having entries

Λl j =

(
∂ ĝ(l)

∂ z j
(1, . . . ,1)

)
, j = 1, . . . ,J and l = 1, . . . ,J, (18)

and let further Π be the diagonal matrix defined by

Π = diag(π) =

π1 0 . . . 0
0 π2 . . . 0
. . . .
0 0 . . . πJ

 . (19)

Let R denotes the largest eigen-value of ΛΠ which represents the basic reproduction, it is defined as the mean number
of infections arising from a single infected individual during his infectious period in a population of susceptibles, and
T the total number of descendants in the multitype Galton-Watson process initiated by m j individuals in each group j,
j = 1, . . . ,J, where each individual in the group j, has descendants of type l according to a distribution with generating
function ĝ( j)(1, . . . ,1−πl(1− zl),1, . . . ,1).

Proposition 1.Tn converges in distribution towards T. Moreover,

(i)If R ≤ 1, the extinction probability is 1 and ∑
L∈INJ

P(T = L) = 1 .

(ii)If R > 1, extinction in group j takes place with probability ρm j
j , j=1,. . . ,J, and

∑
L∈INJ

P(T = L) = ρm1
1 ρm2

2 . . .ρmJ
J . Otherwise explosion takes place in group j with probability 1 − ρm j

j , j=1,. . . ,J,

where the vector (ρ1, . . . ,ρJ) is the root in [0,1]J of the system

z j = ĝ( j) (1−π1(1− z1), . . . ,1−πJ(1− zJ)) , j = 1, . . . ,J. (20)

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 2, No. 1, 47-59 (2013) / www.naturalspublishing.com/Journals.asp 53

If, in addition, Λ is irreducible, Π > 0 and R > 1, then the probability of explosion of the process is given by 1−
ρm1

1 ρm2
2 . . .ρmJ

J .

Proof Let B = (b1, . . . ,bJ) ∈ ZJ
+. We have ,

P[Tn = B] =
b

∑
r=1

∑
Dr(B)

P [I1 = i1,I2 = i2, . . . ,Ir = ir,Ir+1 = 0] , (21)

where b = ∑J
k=1 bk , i1, i2, . . . , ir are vectors in ZJ

+ and Dr(B) = {(i1, . . . , ir) ∈ (ZJ
+)

r such that i1 > 0, . . . , ir > 0 and
i1 + . . .+ ir = B}. For each fix element (i1, . . . , ir) of Dr(B), we have

P[I1 = i1,I1 = i2, . . . ,Ir = ir,Ir+1 = 0] =
P[I1 = i1]P[I2 = i2/I1 = i1;S1 = n− i1]× (22)
P[I3 = i3/I2 = i2;S2 = n− (i1 + i2)]× . . .×
P[Ir+1 = ir+1/Ir = ir;Sr = n− (i1 + i2 + . . .+ ir)].

Thanks to Lemma 3.2 each probability in (22) converges to its counterpart in the context of the multitype Galton-
Watson process where the generating function of new infectives caused by one single infected individual from group j is
given by ĝ( j)(π1(1− z1), . . . ,πJ(1− zJ)). We can thus see that the probability of each term in (21) converges towards the
corresponding probability in the above mentioned Galton-Watson process. Consequently, P[Tn = B]−→ P(B) ∀B ∈ ZJ

+,
where P(.) is the distribution of the total population in the process. This proves the first statement of the proposition, for
the second statement we refer the reader to the established proprieties of branching process published in [4]. Notice that
when Λ is irreducible Π > 0 and R > 1, ΛΠ is irreducible as well as the Galton-Watson process is positively regular.
Therefore, if R> 1, the random vector It

Rt converges almost surely to a random vector W. Moreover, if W ̸= 0, the direction
of W coincides almost surely with the left eigen-vector of the matrix ΛΠ . Hence, It ∼ RtW or It+1 ∼ RIt . Therefore, It
increases approximately as a geometric series of powers of R.

4 Examples of standard epidemic models

In what follows we describe some epidemic models that satisfy the condition (ii).

4.1 A multivariate extension of the general epidemic model

A direct extension of the general epidemic [3] consists in assuming that each infected individual in group j, j = 1, . . . ,J,
is infectious during some random period having the same distribution as a random variable D j and during this period he
can contact, independently of the others, any given susceptible from class l, l = 1, . . . ,J, in an independent manner and
at the points of a Poisson process with parameter β (n j)

jl . All periods of infection are independent from each other and
from the contact process. It is thus clear that the resulting model is a special case of the collective model and for each j,
j = 1, . . . ,J,

q( j)(k1, . . . ,kJ) = E(exp[−
J

∑
i=1

kiβ
(n j)
ji D j]), k1 ∈ [0,n1], . . . ,kJ ∈ [0,nJ ], (23)
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where β (n j)
ji is of the form

β̂
(n j)
ji
n with β̂ (n j)

ji → β ji, whenever n j →+∞. We have

|q( j)(k1, . . . ,kJ)−E[exp{−
J

∑
i=1

ki

n
β jiD j}]| = |E[exp{−

J

∑
i=1

ki

n
β̂ (n j)

ji D j}]−

E[exp{−
J

∑
i=1

ki

n
β jiD j}]|

≤ |E[
J

∑
i=1

ki

n
β̂ (n j)

ji D j −
J

∑
i=1

ki

n
β jiD j]|

≤ E(D j)
J

∑
i=1

ki

n
|β̂ (n j)

ji −β ji|

≤ E(D j)
J

∑
i=1

|β̂ (n j)
ji −β ji| → 0,

when n j →+∞. In this case we have

ĝ( j)(z) = E[exp{−
J

∑
i=1

(1− zi)β jiD j}], z ∈ [0,1]J , j = 1, . . . ,J. (24)

4.2 The randomised Reed-Frost process

The randomized Reed-Frost was introduced by [14], in the case of a homogeneous population. We modify that model by
assuming that the contacts between infecteds and susceptibles follow a Poisson process. Here we assume that the
probability of not transmitting the infection is a random variable with known distribution Q independently of everything
else. The resulting model can be generalized in the non-homogeneous case in the following way. Every infected
individual in group j does not transmit the infection to a susceptible individual from group i with a random probability
distributed according to Q ji. This implies the following

q( j)(k1, . . . ,kJ) = E

[
J

∏
i=1

Qki
ji

]
, k1 ∈ [0,n1], . . . ,kJ ∈ [0,nJ ], (25)

which can also be written in the form

q( j)(k1, . . . ,kJ) = E

[
J

∏
i=1

e−kiY
(ni)
ji

]
, k1 ∈ [0,n1], . . . ,kJ ∈ [0,nJ ],

where Y (ni)
ji =− ln(Q ji).

We assume that for every i, i = 1, . . . ,J, niY
(ni)
ji converges in mean towards a random variable Ȳji as ni →+∞. Therefore,

|q( j)(k1, . . . ,kJ)−E[exp(−
J

∑
i=1

kiȲji

ni
)]| = |E[exp(−

J

∑
i=1

kiY
(ni)
ji )]−

E[exp(−
J

∑
i=1

kiȲji

ni
)]| (26)

≤ |E[
J

∑
i=1

kiY
(ni)
ji −

J

∑
i=1

kiȲji

ni
]|

≤ E[
J

∑
i=1

ki

ni
|niY

(ni)
ji − Ȳji|]

≤ E[
J

∑
i=1

|niY
(ni)
ji − Ȳji|]−→ 0,
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when ni −→+∞ for i = 1, . . . ,J.
As a consequence, we have

ĝ( j)(z) = E[exp{
J

∑
i=1

−(1− zi)Ȳji}], z ∈ [0,1]J , j = 1, . . . ,J. (27)

The previous model is the special case of the model where Q ji = exp(−β jiD j).

4.3 The model of Lefèvre and Picard

[9] have constructed a larger model by representing the infection process using a sampling process. Here, each infected
in group j, j = 1, . . . ,J, transmits the infection, independently of the others, by choosing with replacement, from each of
the J classes of susceptibles random subsets of respective sizes R j,1, . . . ,R j,J . Thus for each j, j = 1, . . . ,J, we have

q( j)(k1, . . . ,kJ) = E

[
J

∏
i=1

(1− ki

ni
)

R ji
]
, k1 ∈ [0,n1], . . . ,kJ ∈ [0,nJ ], (28)

then

ĝ( j)(z) = E

[
J

∏
i=1

zi
R ji

]
, z ∈ [0,1]J , j = 1, . . . ,J. (29)

4.4 The model of H. Andersson

[1] managed to extend the Martin-Löf model [11]. In his model each infected in group j, j = 1, . . . ,J, transmits the
infection, independently of the others, by choosing without replacement, from each of the J classes of susceptibles one
random subset of size in R j,1, . . . ,R j,J . Accordingly, for each j, j = 1, . . . ,J,

q( j)(k1, . . . ,kJ) = E

[
J

∏
i=1

C
R ji
ni−ki

/C
R ji
ni

]
, k1 ∈ [0,n1], . . . ,kJ ∈ [0,nJ ], (30)

which can also be written as

q( j)(k1, . . . ,kJ) = E

[
J

∏
i=1

(
R ji−1

∏
s=0

(1− ki

ni − s
)

)]
, k1 ∈ [0,n1], . . . ,kJ ∈ [0,nJ ].

We have
R ji−1

∏
s=0

(
1− ki

ni − s

)
=

R ji−1

∏
s=0

[
1− ki

ni
− ki

ni

s/ni

(1− s/ni)

]
. (31)

Since the function x 7−→ x
1−x increasing in [0,+∞[ then for each s ≤ R ji ≤ ni − ki, we have

ki

ni

(s/ni)

(1− s/ni)
≤ ki

ni

R ji/ni

(1−R j,i/ni)
≤

R ji

ni
. (32)

Hence combining (31) with (32), we obtain

R ji−1

∏
s=0

(1− ki

ni − s
)≥

R ji−1

∏
s=0

(1− ki

ni
−

R ji

ni
) =

(
1− ki

ni
−

R ji

ni

)R ji

. (33)

Applying simple facts from analysis on the function x 7−→ xR ji in the interval [1− ki
ni
− R ji

ni
,1− ki

ni
] we obtain(

1− ki

ni
−

R ji

ni

)R ji

=

(
1− ki

ni

)R ji

−
R2

ji

ni
θ R ji−1, θ ∈]1− ki

ni
−

R ji

ni
,1− ki

ni
[. (34)
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From (33) and (34), we have
R ji−1

∏
s=0

(
1− ki

ni − s

)
≥
(

1− ki

ni

)R ji

−
R2

ji

ni
. (35)

Moreover,
R ji−1

∏
s=0

(
1− ki

ni − s

)
≤
(

1− ki

ni

)R ji

. (36)

If E(R2
ji)<+∞, combining (35) with (36) and taking the expectation give, for each j, j = 1, . . . ,J,∣∣∣∣∣q( j)(k1, . . . ,kJ)−E

[
J

∏
i=1

(
1− ki

ni

)R ji
]∣∣∣∣∣=
∣∣∣∣∣E
[

J

∏
i=1

(
R ji−1

∏
s=0

(1− ki

ni − s
)

)
−

J

∏
i=1

(
1− ki

ni

)R ji
]∣∣∣∣∣

≤

∣∣∣∣∣E
[

J

∑
i=1

(
R ji−1

∏
s=0

(1− ki

ni − s
)−

(
1− ki

ni

)R ji
)]∣∣∣∣∣

≤E

[
J

∑
i=1

R2
ji

ni

]
−→ 0,

when ni −→+∞, i = 1, . . . ,J.
It is thus clear that the functions ĝ( j)(z), j = 1, . . . ,J, are given by

ĝ( j)(z) = E

[
J

∏
i=1

zi
R ji

]
, z ∈ [0,1]J , j = 1, . . . ,J. (37)

When comparing (29) and (37), we see that the distribution of the final size of the epidemic is the same for the models
in Sections 4.3 and 4.4. This is not a surprise, the reason is that in the two cases the infecteves transmit the infection by
sampling random subsets from each of the J classes of susceptibles. For the model presented in Section 4.2 the sampling
is performed with replacement whereas in model in Section 4.3 sampling is without replacement. As n grows the two
sampling schemes become more and more like each other.

5 Simulation examples

It is well known [4] that in the subcritical case, where the basic reproduction number, R0, satisfies the condition R0 < 1,
the extinction of the Galton-Watson process takes place with probability 1. This case corresponds to a minor outbreak. In
the supercritical case where R0 > 1, the Galton-Watson process can escape extinction with a positive probability, which
corresponds to a major outbreak. In the latter case, the branching approximation is not suitable [7]. To illustrate this fact,
we give some numerical results for the general epidemic model presented in the Section 4.1 by considering two
interacting populations. In this section we repeatedly simulate, by using the conditional distribution in (3) and the
equality (2), the number of infectives in the two populations and compare it to two interconnected Galton-Watson
process for different values of R0 and for large populations sizes.

For the general epidemic, the infectious periods D1 and D2 in the first and second populations are supposed to be
negative exponential random variables with means µ−1

1 and µ−1
2 respectively and the parameter βi j is the pairwise rate for

a susceptible from population i to be infected by an infective in population j, i, j = 1,2 which corresponds to the birth and
death rates for the two interconnected Galton-Watson process. With these arguments and by supposing that the infection
can only be transmitted between the populations (β11 = β22 = 0), (18), (19) and (23) imply that R0 =

√
R012R21 where

R0rs =
βrs
µr

;r ̸= s.
Figure 1 and Figure 2, for various values of n1 and n2, show where time (measured in generations) t ∈ 0,1,2, ....20 and
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Fig. 1 Single sample of infectives. first population (−−) and seconde population (−−) against the single sample of the Galton-Watson
process first component (−− line dotted) and seconde component (−− dashed line dotted), for R0 = 0.4 and n1 = n2 = 100, n1 = n2 =
1000 and n1 = n2 = 10000.

the fractions of infectives in the two populations against the Galton-Watson approximation fractions. In the first examples
(Figure 1), where the parameter values are chosen so that the basic reproduction number satisfies R0 < 1, we see that the
numbers of infective individuals in the two populations and the Galton-Watson process die out. In this case, we see that the
proximation works well when the initial sizes are large enough. In the second example, where R0 ≥ 1, we see that (Figure
2) the epidemic extinction occurs slowly while the branching process continues to grow. In this case the approximation it
is not good. In the third example, the frequency histograms show how the joint and marginal approximate distribution of
the number of infectives seem to be well approximated by a normal distribution (Figure 3 and Figure 4). The latter fact
will be the subject of future research on the generalized Multitype Collective Reed-Frost Model.
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Fig. 2 Single sample of infectives. first population (−−) and seconde population (−−) against the single sample of the Galton-Watson
process first component (−− line dotted) and seconde component (−− dashed line dotted) for R0 = 0.85 (Fig.1), R0 = 1 (Fig.2) and
R0 = 2.4 (Fig.3) when n1 = n2 = 10000.
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Fig. 3 Frequency histograms based on 10000 simulations for joint (left) and marginal (right) distribution of the numbers of infectives
in each population at generation t = 10 for R0 = 2.4 when n1 = n2 = 10000.
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